Copied to
clipboard

G = A4×C62order 432 = 24·33

Direct product of C62 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C62, C242C33, (C2×C6)⋊3C62, (C2×C62)⋊9C6, C22⋊(C3×C62), C23⋊(C32×C6), C6216(C2×C6), (C22×C62)⋊4C3, (C23×C6)⋊2C32, (C22×C6)⋊2(C3×C6), SmallGroup(432,770)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C62
C1C22C2×C6C62C32×A4A4×C3×C6 — A4×C62
C22 — A4×C62
C1C62

Generators and relations for A4×C62
 G = < a,b,c,d,e | a6=b6=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 952 in 394 conjugacy classes, 170 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C23, C32, C32, A4, C2×C6, C2×C6, C24, C3×C6, C3×C6, C2×A4, C22×C6, C22×C6, C33, C3×A4, C62, C62, C22×A4, C23×C6, C32×C6, C6×A4, C2×C62, C2×C62, C32×A4, C3×C62, A4×C2×C6, C22×C62, A4×C3×C6, A4×C62
Quotients: C1, C2, C3, C22, C6, C32, A4, C2×C6, C3×C6, C2×A4, C33, C3×A4, C62, C22×A4, C32×C6, C6×A4, C32×A4, C3×C62, A4×C2×C6, A4×C3×C6, A4×C62

Smallest permutation representation of A4×C62
On 108 points
Generators in S108
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)
(1 81 23 74 27 69)(2 82 24 75 28 70)(3 83 19 76 29 71)(4 84 20 77 30 72)(5 79 21 78 25 67)(6 80 22 73 26 68)(7 65 107 58 18 53)(8 66 108 59 13 54)(9 61 103 60 14 49)(10 62 104 55 15 50)(11 63 105 56 16 51)(12 64 106 57 17 52)(31 96 43 85 42 97)(32 91 44 86 37 98)(33 92 45 87 38 99)(34 93 46 88 39 100)(35 94 47 89 40 101)(36 95 48 90 41 102)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)(49 52)(50 53)(51 54)(55 58)(56 59)(57 60)(61 64)(62 65)(63 66)(85 88)(86 89)(87 90)(91 94)(92 95)(93 96)(97 100)(98 101)(99 102)(103 106)(104 107)(105 108)
(1 4)(2 5)(3 6)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)(67 70)(68 71)(69 72)(73 76)(74 77)(75 78)(79 82)(80 83)(81 84)(85 88)(86 89)(87 90)(91 94)(92 95)(93 96)(97 100)(98 101)(99 102)
(1 65 31)(2 66 32)(3 61 33)(4 62 34)(5 63 35)(6 64 36)(7 97 69)(8 98 70)(9 99 71)(10 100 72)(11 101 67)(12 102 68)(13 86 75)(14 87 76)(15 88 77)(16 89 78)(17 90 73)(18 85 74)(19 60 45)(20 55 46)(21 56 47)(22 57 48)(23 58 43)(24 59 44)(25 51 40)(26 52 41)(27 53 42)(28 54 37)(29 49 38)(30 50 39)(79 105 94)(80 106 95)(81 107 96)(82 108 91)(83 103 92)(84 104 93)

G:=sub<Sym(108)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,81,23,74,27,69)(2,82,24,75,28,70)(3,83,19,76,29,71)(4,84,20,77,30,72)(5,79,21,78,25,67)(6,80,22,73,26,68)(7,65,107,58,18,53)(8,66,108,59,13,54)(9,61,103,60,14,49)(10,62,104,55,15,50)(11,63,105,56,16,51)(12,64,106,57,17,52)(31,96,43,85,42,97)(32,91,44,86,37,98)(33,92,45,87,38,99)(34,93,46,88,39,100)(35,94,47,89,40,101)(36,95,48,90,41,102), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(67,70)(68,71)(69,72)(73,76)(74,77)(75,78)(79,82)(80,83)(81,84)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102), (1,65,31)(2,66,32)(3,61,33)(4,62,34)(5,63,35)(6,64,36)(7,97,69)(8,98,70)(9,99,71)(10,100,72)(11,101,67)(12,102,68)(13,86,75)(14,87,76)(15,88,77)(16,89,78)(17,90,73)(18,85,74)(19,60,45)(20,55,46)(21,56,47)(22,57,48)(23,58,43)(24,59,44)(25,51,40)(26,52,41)(27,53,42)(28,54,37)(29,49,38)(30,50,39)(79,105,94)(80,106,95)(81,107,96)(82,108,91)(83,103,92)(84,104,93)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,81,23,74,27,69)(2,82,24,75,28,70)(3,83,19,76,29,71)(4,84,20,77,30,72)(5,79,21,78,25,67)(6,80,22,73,26,68)(7,65,107,58,18,53)(8,66,108,59,13,54)(9,61,103,60,14,49)(10,62,104,55,15,50)(11,63,105,56,16,51)(12,64,106,57,17,52)(31,96,43,85,42,97)(32,91,44,86,37,98)(33,92,45,87,38,99)(34,93,46,88,39,100)(35,94,47,89,40,101)(36,95,48,90,41,102), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(67,70)(68,71)(69,72)(73,76)(74,77)(75,78)(79,82)(80,83)(81,84)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102), (1,65,31)(2,66,32)(3,61,33)(4,62,34)(5,63,35)(6,64,36)(7,97,69)(8,98,70)(9,99,71)(10,100,72)(11,101,67)(12,102,68)(13,86,75)(14,87,76)(15,88,77)(16,89,78)(17,90,73)(18,85,74)(19,60,45)(20,55,46)(21,56,47)(22,57,48)(23,58,43)(24,59,44)(25,51,40)(26,52,41)(27,53,42)(28,54,37)(29,49,38)(30,50,39)(79,105,94)(80,106,95)(81,107,96)(82,108,91)(83,103,92)(84,104,93) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108)], [(1,81,23,74,27,69),(2,82,24,75,28,70),(3,83,19,76,29,71),(4,84,20,77,30,72),(5,79,21,78,25,67),(6,80,22,73,26,68),(7,65,107,58,18,53),(8,66,108,59,13,54),(9,61,103,60,14,49),(10,62,104,55,15,50),(11,63,105,56,16,51),(12,64,106,57,17,52),(31,96,43,85,42,97),(32,91,44,86,37,98),(33,92,45,87,38,99),(34,93,46,88,39,100),(35,94,47,89,40,101),(36,95,48,90,41,102)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48),(49,52),(50,53),(51,54),(55,58),(56,59),(57,60),(61,64),(62,65),(63,66),(85,88),(86,89),(87,90),(91,94),(92,95),(93,96),(97,100),(98,101),(99,102),(103,106),(104,107),(105,108)], [(1,4),(2,5),(3,6),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48),(67,70),(68,71),(69,72),(73,76),(74,77),(75,78),(79,82),(80,83),(81,84),(85,88),(86,89),(87,90),(91,94),(92,95),(93,96),(97,100),(98,101),(99,102)], [(1,65,31),(2,66,32),(3,61,33),(4,62,34),(5,63,35),(6,64,36),(7,97,69),(8,98,70),(9,99,71),(10,100,72),(11,101,67),(12,102,68),(13,86,75),(14,87,76),(15,88,77),(16,89,78),(17,90,73),(18,85,74),(19,60,45),(20,55,46),(21,56,47),(22,57,48),(23,58,43),(24,59,44),(25,51,40),(26,52,41),(27,53,42),(28,54,37),(29,49,38),(30,50,39),(79,105,94),(80,106,95),(81,107,96),(82,108,91),(83,103,92),(84,104,93)]])

144 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3H3I···3Z6A···6X6Y···6BD6BE···6DF
order122222223···33···36···66···66···6
size111133331···14···41···13···34···4

144 irreducible representations

dim1111113333
type++++
imageC1C2C3C3C6C6A4C2×A4C3×A4C6×A4
kernelA4×C62A4×C3×C6A4×C2×C6C22×C62C6×A4C2×C62C62C3×C6C2×C6C6
# reps1324272613824

Matrix representation of A4×C62 in GL5(𝔽7)

50000
05000
00500
00050
00005
,
10000
03000
00600
00060
00006
,
10000
01000
00100
00060
00006
,
10000
01000
00600
00060
00001
,
40000
02000
00040
00004
00400

G:=sub<GL(5,GF(7))| [5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5],[1,0,0,0,0,0,3,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,6],[1,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,1],[4,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,4,0,0,0,0,0,4,0] >;

A4×C62 in GAP, Magma, Sage, TeX

A_4\times C_6^2
% in TeX

G:=Group("A4xC6^2");
// GroupNames label

G:=SmallGroup(432,770);
// by ID

G=gap.SmallGroup(432,770);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,2287,3989]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽